Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food (2024)

1. Peles F., Sipos P., Győri Z., Pfliegler W.P., Giacometti F., Serraino A., Pagliuca G., Gazzotti T., Pócsi I. Adverse effects, transformation, and channeling of aflatoxins into food raw materials in livestock. Front. Microbiol. 2019;10:2861. doi:10.3389/fmicb.2019.02861. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Ráduly Z., Szabó L., Madar A., Pócsi I., Csernoch L. Toxicological and medical aspects of Aspergillus-derived mycotoxins entering the feed and food chain. Front. Microbiol. 2019;10:2908. doi:10.3389/fmicb.2019.02908. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Jalili M. A review on aflatoxins reduction in food. Iran. J. Health Saf. Environ. 2015;3:445–459. [Google Scholar]

4. Frisvad J.C., Hubka V., Ezekiel C.N., Hong S.B., Nováková A., Chen A.J., Arzanlou M., Larsen T.O., Sklenář F., Mahakarnchanakul W., et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019;93:1–63. doi:10.1016/j.simyco.2018.06.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Lizárraga-Paulín E.G., Miranda-Castro S.P., Moreno-Martínez E., Torres-Pacheco I., Lara-Sagahón A.V. Novel methods for preventing and controlling aflatoxins in food: A worldwide daily challenge. In: Razzaghi-Abyaneh M., editor. Aflatoxins—Recent Advances and Future Prospects. InTech; Rijeka, Croatia: 2013. pp. 93–128. [Google Scholar]

6. Caceres I., El Khoury R., Bailly S., Oswald I.P., Puel O., Bailly J.D. Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response. Fungal Genet. Biol. 2017;107:77–85. doi:10.1016/j.fgb.2017.08.005. [PubMed] [CrossRef] [Google Scholar]

7. Reverberi M., Punelli F., Scarpari M., Camera E., Zjalic S., Ricelli A., Fanelli C., Fabbri A.A. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl. Genet. Mol. Biotechnol. 2010;85:1935–1946. doi:10.1007/s00253-009-2220-4. [PubMed] [CrossRef] [Google Scholar]

8. Hong S.Y., Roze L.V., Wee J., Linz J.E. Evidence that a transcription factor regulatory network coordinates oxidative stress response and secondary metabolism in Aspergilli. Microbiologyopen. 2013;2:144–160. doi:10.1002/mbo3.63. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Pfliegler V., Pócsi I., Győri Z., Pusztahelyi T. The Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front. Microbiol. 2020;10:1–45. doi:10.3389/fmicb.2019.02921. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Peles F., Sipos P., Kovács S., Győri Z., Pócsi I., Pusztahelyi T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins. 2021;13:104. doi:10.3390/toxins13020104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Torres A.M., Barros G.G., Palacios S.A., Chulze S.N., Battilani P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res. Int. 2014;62:11–19. doi:10.1016/j.foodres.2014.02.023. [CrossRef] [Google Scholar]

12. Assaf J.C., Khoury A., Chokr A., Louka N., Atoui A. A novel method for elimination of aflatoxin M1 in milk using Lactobacillus rhamnosus GG biofilm. Int. J. Dairy Technol. 2019;72:248–256. doi:10.1111/1471-0307.12578. [CrossRef] [Google Scholar]

13. Assaf J.C., Nahle S., Chokr A., Louka N., Atoui A., El Khoury A. Assorted methods for decontamination of aflatoxin M1 in milk using microbial adsorbents. Toxins. 2019;11:304. doi:10.3390/toxins11060304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Norlia M., Jinap S., Nor-Khaizura M., Radu S., Samsudin N., Azri F.A. Aspergillus section Flavi and aflatoxins: Occurrence, detection, and identification in raw peanuts and peanut-based products along the supply chain. Front. Microbiol. 2019;10:2602. doi:10.3389/fmicb.2019.02602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Serraino A., Bonilauri P., Kerekes K., Farkas Z., Giacometti F., Canever A., Zambrini A.V., Ambrus Á. Occurrence of aflatoxin M1 in raw milk marketed in Italy: Exposure assessment and risk characterization. Front. Microbiol. 2019;10:2516. doi:10.3389/fmicb.2019.02516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Tabata S. Aflatoxin contamination in foods and foodstuffs. Mycotoxins. 1998;47:9–14. doi:10.2520/myco1975.1998.47_9. [CrossRef] [Google Scholar]

17. Arab M., Sohrabvandi S., Mortazavian A.M., Mohammadi R., Rezaei Tavirani M. Reduction of aflatoxin in fermented milks during production and storage. Toxin Rev. 2012;31:44–53. doi:10.3109/15569543.2012.738350. [CrossRef] [Google Scholar]

18. Sharifzadeh A., Ghasemi-Dehkordi P., Foroughi M., Mardanpour-Shahrekordi E., Ramazie S. Aflatoxin M1 contamination levels in cheeses sold in Isfahan Province, Iran. Osong Public Health Res. Perspect. 2017;8:260–263. doi:10.24171/j.phrp.2017.8.4.05. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Shigute T., Washe A.P. Reduction of aflatoxin M1 levels during Ethiopian traditional fermented milk (Ergo) production. J. Food Qual. 2018;2018:4570238. doi:10.1155/2018/4570238. [CrossRef] [Google Scholar]

20. Maleki F., Abdi S., Davodian E., Haghani K., Bakhtiyari S. Exposure of infants to aflatoxin M1 from mother’s breast milk in Ilam, Western Iran. Osong Public Health Res. Perspect. 2015;6:283–287. doi:10.1016/j.phrp.2015.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Warth B., Braun D., Ezekiel C.N., Turner P.C., Degen G.H., Marko D. Biomonitoring of mycotoxins in human breast milk: Current state and future perspectives. Chem. Res. Toxicol. 2016;29:1087–1097. doi:10.1021/acs.chemrestox.6b00125. [PubMed] [CrossRef] [Google Scholar]

22. Fisher W.J., Schilter B., Tritsher A.M., Stadler R.H. Environmental contaminants. Contaminants of milk and dairy products. In: Fuquay J.W., Fox P.F., McSweeney P.L.H., editors. Encyclopedia of Dariry Science. 2nd ed. Academic Press; London, UK: 2011. pp. 898–905. [Google Scholar]

23. Bianchini A., Bullerman L.B. Biological Control of Molds and Mycotoxins in Foods. In: Appell M., Kendra D.F., Trucksess M.W., editors. Mycotoxin Prevention and Control in Agriculture. American Chemical Society; Washington, DC, USA: 2009. pp. 1–16. (ACS Symposium Series). [CrossRef] [Google Scholar]

24. Tian F., Chun H.S. Natural products for preventing and controlling aflatoxin contamination of food. In: Abdulra’uf L., editor. Aflatoxin-Control, Analysis, Detection and Health Risks. IntechOpen; London, UK: 2017. pp. 13–44. [Google Scholar]

25. Nagy R., Máthé E., Csapó J., Sipos P. Modifying Effects of Physical Processes on Starch and Dietary Fiber Content of Foodstuffs. Processes. 2021;9:17. doi:10.3390/pr9010017. [CrossRef] [Google Scholar]

26. Rustom I.Y.S. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chem. 1997;59:57–67. doi:10.1016/S0308-8146(96)00096-9. [CrossRef] [Google Scholar]

27. Negash D. A review of aflatoxin: Occurrence, prevention, and gaps in both food and feed safety. J. Nutr. Health Food Eng. 2018;8:190–197. doi:10.15406/jnhfe.2018.08.00268. [CrossRef] [Google Scholar]

28. Matumba L., Van Poucke C., Ediage E.N., Jacobs B., De Saeger S. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Addit. Contam. Part A. 2015;32:960–969. doi:10.1080/19440049.2015.1029535. [PubMed] [CrossRef] [Google Scholar]

29. Benkerroum N. Aflatoxins: Production, structure, health issues and incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health. 2020;17:1215. doi:10.3390/ijerph17041215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Peng Z., Chen L., Zhu Y., Huang Y., Hu X., Wu Q., Nüssler A.K., Liu L., Yang W. Current major degradation methods for aflatoxins: A review. Trends Food Sci. Tech. 2018;80:155–166. doi:10.1016/j.tifs.2018.08.009. [CrossRef] [Google Scholar]

31. De Mello F.R., Scussel V.M. Characteristics of in-shell Brazil nuts and their relationship to aflatoxin contamination: Criteria for sorting. J. Agric. Food Chem. 2007;55:9305–9310. doi:10.1021/jf071392x. [PubMed] [CrossRef] [Google Scholar]

32. Shi H., Ileleji K., Stroshine R.L., Keener K., Jensen J.L. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioproc. Tech. 2017;10:1042–1052. doi:10.1007/s11947-017-1873-8. [CrossRef] [Google Scholar]

33. Fandohan P., Zoumenou D., Hounhouigan D.J., Marasas W.F.O., Wingfield M.J., Hell K. Fate of aflatoxins and fumonisins during the processing of maize into food products in Benin. Int. J. Food Microbiol. 2005;98:249–259. doi:10.1016/j.ijfoodmicro.2004.07.007. [PubMed] [CrossRef] [Google Scholar]

34. Mutungi C., Lamuka P., Arimi S., Gathumbi J., Onyango C. The fate of aflatoxins during processing of maize into muthokoi – A traditional Kenyan food. Food Control. 2008;19:714–721. doi:10.1016/j.foodcont.2007.07.011. [CrossRef] [Google Scholar]

35. Pearson T.C., Wicklow D.T., Pasikatan M.C. Reduction of aflatoxin and fumonisin contamination in yellow corn by high-speed dual-wavelength sorting. Cher. Chem. 2004;81:490–498. doi:10.1094/CCHEM.2004.81.4.490. [CrossRef] [Google Scholar]

36. Stasiewicz M.J., OFalade T.D., Mutuma M., Mutiga S.K., Harvey J.J.W., Fox G., Pearson T.C., Muthomi J.W., Nelson R.J. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize. Food Control. 2017;78:203–214. doi:10.1016/j.foodcont.2017.02.038. [CrossRef] [Google Scholar]

37. Siwela A.H., Siwela M., Matindi G., Dube S., Nziramasanga N. Decontamination of aflatoxin-contaminated maize by dehulling. J. Sci. Food Agric. 2005;85:2535–2538. doi:10.1002/jsfa.2288. [CrossRef] [Google Scholar]

38. Castells M., Ramos A.J., Sanchis V., Marín S. Distribution of total aflatoxins in milled fractions of hulled rice. J. Agric. Food Chem. 2007;55:2760–2764. doi:10.1021/jf063252d. [PubMed] [CrossRef] [Google Scholar]

39. Azam K., Akhtar S., Gong Y.Y., Routledge M.N., Ismail A., Oliveira C.A.F., Iqbal S.Z., Ali H. Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control. 2021;121:107583. doi:10.1016/j.foodcont.2020.107583. [CrossRef] [Google Scholar]

40. Hwang J.-H., Lee K.-G. Reduction of aflatoxin B1 contamination in wheat by various cooking treatments. Food Chem. 2006;98:71–75. doi:10.1016/j.foodchem.2005.04.038. [CrossRef] [Google Scholar]

41. Lee J., Her J.-Y., Lee K.-G. Reduction of aflatoxins (B1, B2, G1, and G2) in soybean-based model systems. Food Chem. 2015;189:45–51. doi:10.1016/j.foodchem.2015.02.013. [PubMed] [CrossRef] [Google Scholar]

42. Arzandeh S., Jinap S. Effect of initial aflatoxin concentration, heating time and roasting temperature on aflatoxin reduction in contaminated peanuts and process optimisation using response surface modelling. Int. J. Food Sci. Technol. 2011;46:485–491. doi:10.1111/j.1365-2621.2010.02514.x. [CrossRef] [Google Scholar]

43. Rastegar H., Shoeibi S., Yazdanpanah H., Amirahmadi M., Khaneghah A.M., Campagnollo F.B., de Souza Sant’Ana A. Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control. 2017;71:279–284. doi:10.1016/j.foodcont.2016.06.045. [CrossRef] [Google Scholar]

44. Mtega M.M., Mgina C.A., Kaale E., Sempombe S., Kilulya K.F. Occurrence of Aflatoxins in Maize and Maize Products from Selected Locations of Tanzania and the Effects of Cooking Preparation Processes on Toxin Levels. Tanz. J. Sci. 2020;46:407–418. [Google Scholar]

45. Sani A.M., Azizi E.G., Salehi E.A., Rahimi K. Reduction of aflatoxin in rice by different cooking methods. Toxicol. Ind. Health. 2014;30:546–550. doi:10.1177/0748233712462466. [PubMed] [CrossRef] [Google Scholar]

46. Park J.W., Kim Y.B. Effect of pressure cooking on aflatoxin B1 in rice. J. Agric. Food Chem. 2006;54:2431–2435. doi:10.1021/jf053007e. [PubMed] [CrossRef] [Google Scholar]

47. Massarolo K.C., Mendoza J.R., Verma T., Kupski L., Badiale-Furlong E., Bianchini A. 2021: Fate of aflatoxins in cornmeal during single-screw extrusion: A bioaccessibility approach. LWT. 2021;138:110734. doi:10.1016/j.lwt.2020.110734. [CrossRef] [Google Scholar]

48. Xie H., Li Z., Wang Z., Mao G., Zhang H., Wang F., Chen H., Yang S., Tsang Y.F., Lam S.S., et al. Instant Catapult Steam Explosion: A rapid technique for detoxification of aflatoxin-contaminated biomass for sustainable utilization as animal feed. J. Clean. Prod. 2020;255:120010. doi:10.1016/j.jclepro.2020.120010. [CrossRef] [Google Scholar]

49. Pallarés N., Berrada H., Tolosa J., Ferrer E. Effect of high hydrostatic pressure (HPP) and pulsed electric field (PEF) technologies on reduction of aflatoxins in fruit juices. LWT. 2021;142:111000. doi:10.1016/j.lwt.2021.111000. [CrossRef] [Google Scholar]

50. Hassan F.F., Hussein H.Z. Detection of aflatoxin M1 in pasteurized canned milk and using of UV radiation for detoxification. Int. J. Adv. Chem. Eng. Biol. Sci. 2017;4:130–133. doi:10.15242/IJACEBS.C0317031. [CrossRef] [Google Scholar]

51. Ferreira C.D., Lang G.H., da Silva Lindemann I., da Silva Timm N., Hoffmann J.F., Ziegler V., de Oliveira M. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chem. 2021;339:127810. doi:10.1016/j.foodchem.2020.127810. [PubMed] [CrossRef] [Google Scholar]

52. Shen M.H., Singh R. Effect of rotating peanuts on aflatoxin detoxification by ultraviolet C light and irradiation uniformity evaluated by AgCl-based dosimeter. Food Control. 2021;120:107533. doi:10.1016/j.foodcont.2020.107533. [CrossRef] [Google Scholar]

53. Herzallah S., Alshawabkeh K., Fataftah A.A.L. Aflatoxin decontamination of artificially contaminated feeds by sunlight, γ-radiation, and microwave heating. J. Appl. Poult. Res. 2008;17:515–521. doi:10.3382/japr.2007-00107. [CrossRef] [Google Scholar]

54. Mohamed N.F., El-Dine R.S.S., Kot M.A.M., Saber A. Assessing the possible effect of gamma irradiation on the reduction of aflatoxin B1, and on the moisture content in some cereal grains. Am. J. Biomed. Sci. 2015;7:33–39. doi:10.5099/aj150100033. [CrossRef] [Google Scholar]

55. Markov K., Mihaljević B., Domijan A.-M., Pleadin J., Delaš F., Frece J. Inactivation of aflatoxigenic fungi and the reduction of aflatoxin B1 in vitro and in situ using gamma irradiation. Food Control. 2015;54:79–85. doi:10.1016/j.foodcont.2015.01.036. [CrossRef] [Google Scholar]

56. Serra M.S., Pulles M.B., Mayanquer F.T., Vallejo M.C., Rosero M.I., Ortega J.M., Naranjo L.N. Evaluation of the use of gamma radiation for reduction of aflatoxin B1 in corn (Zea mays) used in the production of feed for broiler chickens. J. Agric. Chem. Environ. 2018;7:21–33. doi:10.4236/jacen.2018.71003. [CrossRef] [Google Scholar]

57. Zhang Z.S., Xie Q.F., Che L.M. Effects of gamma irradiation on aflatoxin B 1 levels in soybean and on the properties of soybean and soybean oil. Appl. Radiat. Isot. 2018;139:224–230. doi:10.1016/j.apradiso.2018.05.003. [PubMed] [CrossRef] [Google Scholar]

58. Patil H., Shah N.G., Hajare S.N., Gautam S., Kumar G. Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.) World Mycotoxin J. 2019;12:269–280. doi:10.3920/WMJ2018.2384. [CrossRef] [Google Scholar]

59. Wang B., Mahoney N.E., Pan Z., Khir R., Wu B., Ma H., Zhao L. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control. 2016;59:461–467. doi:10.1016/j.foodcont.2015.06.030. [CrossRef] [Google Scholar]

60. Vijayalakshmi S., Nadanasabhapathi S., Kumar R., Kumar S., Reddy R. Effect of combination processing on aflatoxin reduction: Process optimization by response surface methodology. J. Food Process. Preserv. 2017;41:e13230. doi:10.1111/jfpp.13230. [CrossRef] [Google Scholar]

61. Vijayalakshmi S., Nadanasabhapathi S., Kumar R., Kumar S.S. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology. J. Food Sci. Technol. 2018;55:868–878. doi:10.1007/s13197-017-2939-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Bulut N., Atmaca B., Evrendilek G.A., Uzuner S. Potential of pulsed electric field to control Aspergillus parasiticus, aflatoxin and mutagenicity levels: Sesame seed quality. J. Food Saf. 2020;40:e12855. doi:10.1111/jfs.12855. [CrossRef] [Google Scholar]

63. Liu Y., Li M., Bai F., Bian K. Effects of pulsed ultrasound at 20 kHz on the sonochemical degradation of mycotoxins. World Mycotoxin J. 2019;12:357–366. doi:10.3920/WMJ2018.2431. [CrossRef] [Google Scholar]

64. Basaran P., Basaran-Akgul N., Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008;25:626–632. doi:10.1016/j.fm.2007.12.005. [PubMed] [CrossRef] [Google Scholar]

65. Sen Y., Onal-Ulusoy B., Mutlu M. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innov. Food Sci. Emerg. Technol. 2019;54:252–259. doi:10.1016/j.ifset.2019.05.002. [CrossRef] [Google Scholar]

66. Iqdiam B.M., Abuagela M.O., Boz Z., Marshall S.M., Goodrich-Schneider R., Sims C.A., Marshall M.R., MacIntosh A.J., Welt B.A. Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. J. Food Process. Preserv. 2020;44:e14305. doi:10.1111/jfpp.14305. [CrossRef] [Google Scholar]

67. Puligundla P., Lee T., Mok C. 2020: Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT. 2020;124:108333. doi:10.1016/j.lwt.2019.108333. [CrossRef] [Google Scholar]

68. Pankaj S.K., Shi H., Keener K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018;71:73–83. doi:10.1016/j.tifs.2017.11.007. [CrossRef] [Google Scholar]

69. Yang Q. Decontamination of aflatoxin B1. In: Long X.D., editor. Aflatoxin B1 Occurrence, Detection and Toxicological Effects. InTechOpen; London, UK: 2019. [CrossRef] [Google Scholar]

70. Ryu D., Bianchini A., Bullerman L.B. Effects of processing on mycotoxins. Stewart Postharvest Rev. 2008;6:1–7. [Google Scholar]

71. Wgiorgis G.A., Yildiz F. Review on high-pressure processing of foods. Cogent Food Agric. 2019;5:1568725. doi:10.1080/23311932.2019.1568725. [CrossRef] [Google Scholar]

72. Pasikatan M.C., Dowell F.E. Sorting systems based on optical methods for detecting and removing seeds infested internally by insects or fungi: A review. Appl. Spectrosc. Rev. 2001;36:399–416. doi:10.1081/ASR-100107719. [CrossRef] [Google Scholar]

73. Tao F., Yao H., Hruska Z., Burger L.W., Rajasekaran K., Bhatnagar D. Recent development of optical methods in rapid and non-destructive detection of aflatoxin and fungal contamination in agricultural products. Trends Analyt. Chem. 2018;100:65–81. doi:10.1016/j.trac.2017.12.017. [CrossRef] [Google Scholar]

74. Eisa N.A., Ali F.M., El-Habbaa G.M., Abdel-Reheem S.K., Abou-El-Ella M.F. Pulsed electric field technology for checking aflatoxin production in cultures and corn grains. Egypt. J. Phytopathol. 2020;31:75–86. [Google Scholar]

75. Vanga S.K., Wang J., Orsat V., Raghavan V. Effect of pulsed ultrasound, a green food processing technique, on the secondary structure and in-vitro digestibility of almond milk protein. Food Res. Int. 2020;137:109523. doi:10.1016/j.foodres.2020.109523. [PubMed] [CrossRef] [Google Scholar]

76. Kumar V.V. Aflatoxins: Properties, toxicity, and detoxification. Nutr. Food Sci. Int. J. 2018;6:1–4. doi:10.19080/NFSIJ.2018.06.555696. [CrossRef] [Google Scholar]

77. Patras A., Julakanti S., Yannam S., Bansode R.R., Burns M., Vergne M.J. Effect of UV irradiation on aflatoxin reduction: A cytotoxicity evaluation study using human hepatoma cell line. Mycotoxin Res. 2017;33:343–350. doi:10.1007/s12550-017-0291-0. [PubMed] [CrossRef] [Google Scholar]

78. Moreau M., Lescure G., Agoulon A., Svinareff P., Orange N., Feuilloley M. Application of the pulsed light technology to mycotoxin degradation and inactivation. J. Appl. Toxicol. 2013;33:357–363. doi:10.1002/jat.1749. [PubMed] [CrossRef] [Google Scholar]

79. Woldemariam H.W., Kießling M., Emire S.A., Teshome P.G., Töpfl S., Aganovic K. Influence of electron beam treatment on naturally contaminated red pepper (Capsicum annuum L.) powder: Kinetics of microbial inactivation and physicochemical quality changes. Innov. Food Sci. Emerg. Technol. 2021;67:102588. doi:10.1016/j.ifset.2020.102588. [CrossRef] [Google Scholar]

80. Misra N.N., Yadav B., Roopesh M.S., Jo C. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. doi:10.1111/1541-4337.12398. [PubMed] [CrossRef] [Google Scholar]

81. Hojnik N., Cvelbar U., Tavcar-Kalcher G., Walsh J.L., Križaj I. Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins. 2017;9:151. doi:10.3390/toxins9050151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Hojnik N., Modic M., Walsh J.L., Zigon D., Javornik U., Plavec J., Zegura B., Filipic M., Cvelbar U. 2021: Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. J. Hazard. Mater. 2021;403:123593. doi:10.1016/j.jhazmat.2020.123593. [PubMed] [CrossRef] [Google Scholar]

83. Escobedo-González R., Méndez-Albores A., Villarreal-Barajas T., Aceves-Hernández J., Miranda-Ruvalcaba R., Nicolás-Vázquez I. A theoretical study of 8-chloro-9-hydroxy-aflatoxin B1, the conversion product of aflatoxin B1 by neutral electrolyzed water. Toxins. 2016;8:225. doi:10.3390/toxins8070225. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Awuah S.K., Kumah P., Tandoh P.K. Effect of packaging materials on insect mortality and aflatoxin contamination in stored maize under different conditions. J. Exp. Agric. Int. 2019;29:1–8. doi:10.9734/JEAI/2019/45958. [CrossRef] [Google Scholar]

85. Nwaubani S.I., Otitodun G.O., Ajao S.K., Opit G.P., Ala A.A., Omobowale M.O., Ogwumike J.C., Abel G.I., Ogundare M.O., Braimah J.A., et al. Assessing efficacies of insect pest management methods for stored bagged maize preservation in storehouses located in Nigerian markets. J. Stored Prod. Res. 2020;86:101566. doi:10.1016/j.jspr.2019.101566. [CrossRef] [Google Scholar]

86. Masters W.A., Guevara A.G. Willingness to Pay for Hermetic Grain Storage Bags in MALAWI. [(accessed on 15 January 2021)];2018 Available online: https://ageconsearch.umn.edu/record/27729510.22004/ag.econ.277295

87. Rushing B., Selim M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019;124:81–100. doi:10.1016/j.fct.2018.11.047. [PubMed] [CrossRef] [Google Scholar]

88. Jubeen F., Sher F., Hazafa A., Zafar F., Ameen M., Rasheed T. Evaluation and detoxification of aflatoxins in ground and tree nuts using food grade organic acids. Biocatal. Agric. Biotechnol. 2020;29 doi:10.1016/j.bcab.2020.101749. [CrossRef] [Google Scholar]

89. Méndez-Albores A., Del Río-García J.C., Moreno-Martínez E. Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Anim. Feed Sci. Technol. 2007;135:249–262. doi:10.1016/j.anifeedsci.2006.07.009. [CrossRef] [Google Scholar]

90. Méndez-Albores A., Martínez-Bustos F., Gaytán-Martínez M., Moreno-Martínez E. Effect of lactic and citric acid on the stability of B-aflatoxins in extrusion cooked sorghum. Lett. Appl. Microbiol. 2008;47:1–7. doi:10.1111/j.1472-765X.2008.02376.x. [PubMed] [CrossRef] [Google Scholar]

91. Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Đuragić O., Kos J., Pinotti L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins. 2019;11:617. doi:10.3390/toxins11110617. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Altug T., Yousef A.E., Marth E.H. Degradation of aflatoxin B1 in dried figs by sodium bisulfite with or without heat, ultraviolet energy or hydrogen peroxide. J. Food Prot. 1990;53:581–582. doi:10.4315/0362-028X-53.7.581. [PubMed] [CrossRef] [Google Scholar]

93. Shi H., Stroshine R., Ileleji K. Determination of the relative effectiveness of four food additives in degrading aflatoxin in distillers wet grains and condensed distillers solubles. J. Food Prot. 2017;80:90–95. doi:10.4315/0362-028X.JFP-16-092. [PubMed] [CrossRef] [Google Scholar]

94. Jalili M., Jinap S. Role of sodium hydrosulphite and pressure on the reduction of aflatoxins and ochratoxin A in black pepper. Food Control. 2012;27:11–15. doi:10.1016/j.foodcont.2012.02.022. [CrossRef] [Google Scholar]

95. Jalili M., Jinap S., Son R. The effect of chemical treatment on reduction of aflatoxins and ochratoxin A in black and white pepper during washing. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011;28:485–493. doi:10.1080/19440049.2010.551300. [PubMed] [CrossRef] [Google Scholar]

96. Phillips T.D. Dietary clay in the chemoprevention of aflatoxin-induced disease. Toxicol. Sci. 1999;52:118–126. doi:10.1093/toxsci/52.suppl_1.118. [PubMed] [CrossRef] [Google Scholar]

97. Loi M., Renaud J.B., Rosini E., Pollegioni L., Vignali E., Haidukowski M., Sumarah M.W., Logrieco A.F., Mul G. 2020: Enzymatic transformation of aflatoxin B1 by Rh_DypB peroxidase and characterization of the reaction products. Chemosphere. 2020;250:126296. doi:10.1016/j.chemosphere.2020.126296. [PubMed] [CrossRef] [Google Scholar]

98. McKenzie K.S., Kubena L.F., Denvir A.J., Rogers T.D., Hitchens G.D., Bailey R.H., Harvey R.B., Buckley S.A., Phillips T.D. Aflatoxicosis in turkey poults is prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult. Sci. 1998;77:1094–1102. doi:10.1093/ps/77.8.1094. [PubMed] [CrossRef] [Google Scholar]

99. Luo X., Wang R., Wang L., Li Y., Bian Y., Chen Z. Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control. 2014;37:171–176. doi:10.1016/j.foodcont.2013.09.043. [CrossRef] [Google Scholar]

100. Savi G.D., Piacentini K.C., Scussel V.M. Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored wheat grains (Triticum aestivum L.) J. Food Process. Preserv. 2015;39:940–948. doi:10.1111/jfpp.12307. [CrossRef] [Google Scholar]

101. Isikber A.A., Athanassiou C.G. The use of ozone gas for the control of insects and micro-organisms in stored products. J. Stored Prod. Res. 2015;64:139–145. doi:10.1016/j.jspr.2014.06.006. [CrossRef] [Google Scholar]

102. Torlak E., Akata I., Erci F., Uncu A.T. Use of gaseous ozone to reduce aflatoxin B1 and microorganisms in poultry feed. J. Stored Prod. Res. 2016;68:44–49. doi:10.1016/j.jspr.2016.04.003. [CrossRef] [Google Scholar]

103. Tiwari B.W., Brennan C.S., Curran T., Gallagher E., Cullen P.J., O’ Donnell C.P. Application of ozone in grain processing. J. Cereal Sci. 2010;51:248–255. doi:10.1016/j.jcs.2010.01.007. [CrossRef] [Google Scholar]

104. Zhu F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018;264:358–366. doi:10.1016/j.foodchem.2018.05.047. [PubMed] [CrossRef] [Google Scholar]

105. Ismail A., Gonçalves B.L., de Neeff D.V., Ponzilacqua B., Coppa C.F.S.C., Hintzsche H., Sajid M., Cruz A.G., Corassin C.H., Oliveira C.F.A. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res. Int. 2018;113:74–85. doi:10.1016/j.foodres.2018.06.067. [PubMed] [CrossRef] [Google Scholar]

106. Park D.L., Price W.D. Reduction of aflatoxin hazards using ammoniation. Rev. Environ. Contam. Toxicol. 2001;171:139–175. doi:10.1007/978-1-4613-0161-5_4. [CrossRef] [Google Scholar]

107. Yu Y., Shi J., Xie B., He Y., Qin Y., Wang D., Shi H., Ke Y., Sun Q. Detoxification of aflatoxin B1 in corn by chlorine dioxide gas. Food Chem. 2020;328:127121. doi:10.1016/j.foodchem.2020.127121. [PubMed] [CrossRef] [Google Scholar]

108. Zahoor M., Khan F.A. 2012: Aflatoxin B1 detoxification by magnetic carbon nanostructures prepared from maize straw. Desalin. Water Treat. 2016;57:11893–11903. doi:10.1080/19443994.2015.1046147. [CrossRef] [Google Scholar]

109. Ji J., Xie W. 2020: Detoxification of Aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater. 2020;381:120915. doi:10.1016/j.jhazmat.2019.120915. [PubMed] [CrossRef] [Google Scholar]

110. Ji J., Xie W. 2021: Removal of aflatoxin B1 from contaminated peanut oils using magnetic attapulgite. Food Chem. 2021;339:128072. doi:10.1016/j.foodchem.2020.128072. [PubMed] [CrossRef] [Google Scholar]

111. Sun S., Zhao R., Xie Y., Liu Y. Reduction of aflatoxin B1 by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil. Food Chem. 2021;343:128521. doi:10.1016/j.foodchem.2020.128521. [PubMed] [CrossRef] [Google Scholar]

112. Udomkun P., Njukwe E. Nanotechnological methods for aflatoxin control. In: Rai M., Abd-Elsalam K., editors. Nanomycotoxicology: Treating Mycotoxins in the Nano Way. Academic Press; Cambridge, MA, USA: 2020. pp. 385–396. [CrossRef] [Google Scholar]

113. Kujur A., Kumar A., Yadav A., Prakash B. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. LWT. 2020;130:109619. doi:10.1016/j.lwt.2020.109619. [CrossRef] [Google Scholar]

114. Vila-Donat P., Marín S., Sanchis V., Ramos A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018;114:246–259. doi:10.1016/j.fct.2018.02.044. [PubMed] [CrossRef] [Google Scholar]

115. Wielogórska E., MacDonald S., Elliott C.T. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin J. 2016;9:419–433. doi:10.3920/WMJ2015.1919. [CrossRef] [Google Scholar]

116. Holanda D.M., Kim S.W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins. 2021;13:171. doi:10.3390/toxins13020171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Hamza Z., El-Hashash M., Aly S., Hathout A., Soto E., Sabry B., Ostroff G. Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B1 binder. Carbohydr. Polym. 2019;203:185–192. doi:10.1016/j.carbpol.2018.08.047. [PubMed] [CrossRef] [Google Scholar]

118. Nazarizadeh H., Pourreza J. Evaluation of three mycotoxin binders to prevent the adverse effects of aflatoxin B1 in growing broilers. J. Appl. Anim. Res. 2019;47:135–139. doi:10.1080/09712119.2019.1584106. [CrossRef] [Google Scholar]

119. Solís-Cruz B., Hernández-Patlán D., Beyssac E., Latorre J.D., Hernandez-Velasco X., Merino-Guzman R., Tellez G., López-Arellano R. Evaluation of chitosan and cellulosic polymers as binding adsorbent materials to prevent aflatoxin B1, fumonisin B1, ochratoxin, trichothecene, deoxynivalenol, and zearalenone mycotoxicoses through an in vitro gastrointestinal model for poultry. Polymers. 2017;9:529. doi:10.3390/polym9100529. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Chefchaou H., Mzabi A., Tanghort M., Moussa H., Chami N., Chami F., Remmal A. A comparative study of different mycotoxin adsorbents against DON, T2 toxin, aflatoxins and fumonisins production in maize flour. Livest. Res. Rural. Dev. 2019;31:35. [Google Scholar]

121. Pappas A.C., Tsiplakou E., Tsitsigiannis D.I., Georgiadou M., Iliadi M.K., Sotirakoglou K., Zervas G. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets. Br. Poult. Sci. 2016;57:551–558. doi:10.1080/00071668.2016.1187712. [PubMed] [CrossRef] [Google Scholar]

122. Murugesan G.R., Ledoux D.R., Naehrer K., Berthiller F., Applegate T.J., Grenier B., Phillips T.D., Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015;94:1298–1315. doi:10.3382/ps/pev075. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Alvarado A.M., Zamora-Sanabria R., Granados-Chinchilla F. A Focus on aflatoxins in feedstuffs: Levels of contamination, prevalence, control strategies, and impacts on animal health. In: Abdulra’Uf L., editor. Aflatoxin—Control, Analysis, Detection and Health Risks. Intech Open; London, UK: 2017. pp. 116–152. [CrossRef] [Google Scholar]

124. Duarte D.E., Winston M.H., Jr., Brinton A.H., Lon W.W. Aflatoxin Binders I: In vitro binding assay for aflatoxin B1 by several potential sequestering agents. Mycopathologia. 2003;156:223–226. doi:10.1023/A:1023388321713. [PubMed] [CrossRef] [Google Scholar]

125. Bocarov-Stancic A., Adamovic M., Salma N., Bodroža-Solarov M., Vučković J., Pantić V. In vitro efficacy of mycotoxins adsorption by natural mineral adsorbents. Biotech. Anim. Husbandry. 2011;27:1241–1251. doi:10.2298/BAH1103241B. [CrossRef] [Google Scholar]

126. Li J., Suo D., Su X. Binding capacity for aflatoxin B1 by different adsorbents. Agric. Sci. China. 2010;9:449–456. doi:10.1016/S1671-2927(09)60116-4. [CrossRef] [Google Scholar]

127. Sulzburger S.A., Melnichenko S., Cardoso F.C. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. J. Dairy Sci. 2017;100:1856–1869. doi:10.3168/jds.2016-11612. [PubMed] [CrossRef] [Google Scholar]

128. Gallo A., Masoero F. In vitro models to evaluate the capacity of different sequestering agents to adsorb aflatoxins. Ital. J. Anim. Sci. 2010;9:109–116. doi:10.4081/ijas.2010.e21. [CrossRef] [Google Scholar]

129. Jaynes W., Zartman R., Hudnall W. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007;36:197–205. doi:10.1016/j.clay.2006.06.012. [CrossRef] [Google Scholar]

130. Naeimipour F., Aghajani J., Kojuri S.A., Ayoubi S. Useful approaches for reducing aflatoxin M1 content in milk and dairy products. Biomed. Biotechnol. Res. J. 2018;2:94–99. doi:10.4103/bbrj.bbrj_59_18. [CrossRef] [Google Scholar]

131. Kissell L., Davidson S., Hopkins B.A., Smith G.W., Whitlow L.W. Effect of experimental feed additives on aflatoxin in milk of dairy cows fed aflatoxin-contaminated diets. J. Anim. Physiol. Anim. Nutr. (Berl.) 2013;97:694–700. doi:10.1111/j.1439-0396.2012.01311.x. [PubMed] [CrossRef] [Google Scholar]

132. Abdel-Wahhab M.A., Kholif A.M. Mycotoxins in animal feeds and prevention strategies: A review. Asian J. Anim. Sci. 2008;2:7–25. doi:10.3923/ajas.2008.7.25. [CrossRef] [Google Scholar]

133. Zahoor M., Khan F.A. Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab. J. Chem. 2018;11:729–738. doi:10.1016/j.arabjc.2014.08.025. [CrossRef] [Google Scholar]

134. Liu J.B., Yan H.L., Cao S.C., Hu Y.D., Zhang H.F. Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin. Asian-Australas. J. Anim. Sci. 2020;33:294–304. doi:10.5713/ajas.18.0870. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Di Gregorio M.C., de Neeff D.V., Jager A.V., Corassin C.H., de Pinho Carão A.C., de Albuquerque R., de Azevedo A.C., Oliveira C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014;33:125–135. doi:10.3109/15569543.2014.905604. [CrossRef] [Google Scholar]

136. Baglieri A., Reyneri A., Gennari M., Negre M. Organically modified clays as binders of fumonisins in feedstocks. J. Environ. Sci. Health B. 2013;48:776–783. doi:10.1080/03601234.2013.780941. [PubMed] [CrossRef] [Google Scholar]

137. Aoudia N., Callu P., Grosjean F., Larondelle Y. Effectiveness of mycotoxin sequestration activity of micronized wheat fibres on distribution of ochratoxin A in plasma, liver and kidney of piglets fed a naturally contaminated diet. Food Chem. Toxicol. 2009;47:1485–1489. doi:10.1016/j.fct.2009.03.033. [PubMed] [CrossRef] [Google Scholar]

138. Avantaggiato G., Solfrizzo M., Visconti A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005;22:379–388. doi:10.1080/02652030500058312. [PubMed] [CrossRef] [Google Scholar]

139. Arak H., Mohammad A.K.T., Mehdi H., Shaban R. The first in vivo application of synthetic polymers based on methacrylic acid as an aflatoxin sorbent in an animal model. Mycotoxin Res. 2019;35:293–307. doi:10.1007/s12550-019-00353-z. [PubMed] [CrossRef] [Google Scholar]

140. Bodbodak S., Hesari J., Peighambardoust S.H., Mahkam M. Selective decontamination of aflatoxin M1 in milk by molecularly imprinted polymer coated on the surface of stainless steel plate. Int. J. Dairy Technol. 2018;71:868–878. doi:10.1111/1471-0307.12551. [CrossRef] [Google Scholar]

141. Nowosad K., Sujka M., Pankiewicz U., Kowalski R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2021;58:397–411. doi:10.1007/s13197-020-04512-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Considine K.M., Kelly A.L., Fitzgerald G.F., Hill C., Sleator R.D. High-pressure processing—Effects on microbial food safety and food quality. FEMS Microbiol. Lett. 2008;281:1–9. doi:10.1111/j.1574-6968.2008.01084.x. [PubMed] [CrossRef] [Google Scholar]

143. Pedron T., Segura F.R., Paniz F.P., de Moura Souza F., dos Santos M.C., de Magalhães Júnior A.M., Batista B.L. Mitigation of arsenic in rice grains by polishing and washing: Evidencing the benefit and the cost. J. Cereal Sci. 2019;87:52–58. doi:10.1016/j.jcs.2019.03.003. [CrossRef] [Google Scholar]

144. Román-Ochoa Y., Choque Delgado G.T., Tejada T.R., Yucra H.R., Durand A.E., Hamaker B.R. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere. 2021;274:129792. doi:10.1016/j.chemosphere.2021.129792. [PubMed] [CrossRef] [Google Scholar]

145. Den Besten H.M.W., Wells-Bennik M.H.J., Zwietering M.H. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annu. Rev. Food Sci. Technol. 2018;9:383–410. doi:10.1146/annurev-food-030117-012808. [PubMed] [CrossRef] [Google Scholar]

146. Banga J.R., Balsa-Canto E., Moles C.G., Alonso A.A. Improving food processing using modern optimization methods. Trends Food Sci. Technol. 2003;14:131–144. doi:10.1016/S0924-2244(03)00048-7. [CrossRef] [Google Scholar]

147. Sevda S., Garlapati V.K., Singh A. Role of mathematical and statistical modelling in food engineering. In: Sevda S., Singh A., editors. Mathematical and Statistical Applications in Food Engineering. CRC Press; Boca Raton, FL, USA: 2020. pp. 1–4. [CrossRef] [Google Scholar]

148. Lonsane B.K., Saucedo-Castaneda G., Raimbault M., Roussos S., Viniegra-Gonzalez G., Ghildyal N.P., Ramakrishna M., Krishnaiah M.M. Scale-Up Strategies for Solid State Fermentation Systems. Process Biochem. 1992;27:259–273. doi:10.1016/0032-9592(92)85011-P. [CrossRef] [Google Scholar]

149. Akoto E.Y., Klu Y.A.K., Lamptey M., Asibuo J.Y., Davis J., Phillips R., Jordan D., Rhoads J., Hoistington D., Chen J. Use of peanut meal as a model matrix to study the effect of composting on aflatoxin decontamination. World Mycotoxin J. 2017;10:131–141. doi:10.3920/WMJ2016.2155. [CrossRef] [Google Scholar]

150. Kramer B., Wunderlich J., Muranyi P. Recent findings in pulsed light disinfection. J. Appl. Microbiol. 2017;122:830–856. doi:10.1111/jam.13389. [PubMed] [CrossRef] [Google Scholar]

151. Mir S.A., Dar B.N., Shah M.A., Sofi S.A., Hamdani A.M., Oliveira C.A.F., Moosavi M.H., Khanegha A.M., Sant’Ana A.S. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem. Toxicol. 2021;148:111976. doi:10.1016/j.fct.2021.111976. [PubMed] [CrossRef] [Google Scholar]

152. De Almeida J.L., Pareyt B., Gerits L.R., Delcour J.A. Effect of wheat grain steaming and washing on lipase activity in whole grain flour. Cereal Chem. 2014;91:321–326. doi:10.1094/CCHEM-09-13-0197-CESI. [CrossRef] [Google Scholar]

153. Reungoat J., Macova M., Escher B.I., Carswell S., Mueller J.F., Kellera J. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res. 2010;44:625–637. doi:10.1016/j.watres.2009.09.048. [PubMed] [CrossRef] [Google Scholar]

154. Lima F., Vieira K., Santos M., de Souza P.M. Effects of radiation technologies on food nutritional quality. In: Diaz A.V., Garcia-Gimeno R.M., editors. Descriptive Food Science. IntechOpen; London, UK: [CrossRef] [Google Scholar]

155. Ahmed M.M., Abdalla I.G., Salih A.M., Hassan A.B. Effect of gamma radiation on storability and functional properties of sorghum grains (Sorghum bicolor L.) Food Sci. Nutr. 2018;6:1933–1939. doi:10.1002/fsn3.752. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Picart-Palmade L., Cunault C., Chevalier-Lucia D., Belleville M.P., Marchesseau S. Potentialities and Limits of Some Non-Thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2019:5. doi:10.3389/fnut.2018.00130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Ojha K.S., Tiwari B.K., O’Donnell C.P. Chapter Six—Effect of Ultrasound Technology on Food and Nutritional Quality. Adv. Food Nutr. Res. 2018;84:207–240. doi:10.1016/bs.afnr.2018.01.001. [PubMed] [CrossRef] [Google Scholar]

158. Gallo M., Ferrara L., Naviglio D. Application of ultrasound in food science and technology: A perspective. Foods. 2018;7:164. doi:10.3390/foods7100164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Dasan B.G., Yildirim T., Boyaci I.H. Surface decontamination of eggshells by using non-thermal atmospheric plasma. Int. J. Food Microbiol. Int. J. Food Microbiol. 2018;266:267–273. doi:10.1016/j.ijfoodmicro.2017.12.021. [PubMed] [CrossRef] [Google Scholar]

160. Misra N.N., Jo C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 2017;64:74–86. doi:10.1016/j.tifs.2017.04.005. [CrossRef] [Google Scholar]

161. Charoux C.M.G., Free L., Hinds L.M., Vijayaraghavan R.K., Daniels S., O’Donnell C.P., Tiwari B.K. Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of model liquid food and black pepper grains. LWT. 2019:108716. doi:10.1016/j.lwt.2019.108716. [CrossRef] [Google Scholar]

162. Thirumdas R., Saragapani C., Ajinkya M.T., Deshmukh R.R., Annapure U.S. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innov. Food Sci. Emerg. Technol. 2016;37:53–60. doi:10.1016/j.ifset.2016.08.009. [CrossRef] [Google Scholar]

163. Zhang C., Zhang Y., Zhao Z., Liu W., Chen Y., Yang G., Xia X., Cao Y. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control. 2019;104:83–90. doi:10.1016/j.foodcont.2019.04.029. [CrossRef] [Google Scholar]

164. Udomkun P., Wiredu A.N., Nagle M., Müller J., Vanlauwe B., Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control. 2017;76:127–138. doi:10.1016/j.foodcont.2017.01.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Zhang Y., He S., Simpson B.K. Enzymes in Food Bioprocessing—Novel food enzymes, applications, and related techniques. Curr. Opin. Food Sci. 2018;19:S2214799317300838. doi:10.1016/j.cofs.2017.12.007. [CrossRef] [Google Scholar]

Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food (2024)

FAQs

Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food? ›

Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food.

How to reduce aflatoxins in food? ›

Sorting insect- damaged cobs and cobs having poor husk covering can reduce aflatoxin contamination. Apart from this, winnowing, washing before cooking, and dehulling of maize grains are effective in achieving significant aflatoxin and other mycotoxins removal (Bankole and Adebanjo 2003).

What are the physical and chemical properties of aflatoxins? ›

Physical and Chemical Properties of Aflatoxins

Aflatoxins are colourless to pale yellow crystals, exhibiting fluorescence under UV light. They are slightly soluble in water (10-20μg/ml) and freely soluble in moderately polar solvents such as chloroform, menthol and dimethyl sulfoxide.

How can the levels of aflatoxin in foods be reduced and eliminated? ›

Although aflatoxin contamination cannot be eliminated from food, it can be reduced to tolerable levels with rigorous aflatoxin reduction methods such as fertilization, irrigation, insect control, mechanized drying, and sorting throughout the food production chain.

What are the technologies for reducing aflatoxins? ›

Some other effective technologies such as irradiation, ozone fumigation, chemical and biological control agents, and improved packaging materials can also minimize post-harvest aflatoxins contamination in agricultural products.

How to control aflatoxin levels? ›

Maintain Proper Storage Conditions. Keep moisture in stored grain below 12-13 percent to stop the development of aflatoxin. Also keep insect activity to a minimum. Cooling the grain below 60 degrees F with outside air as soon as temperatures permit is beneficial in arresting the development of insect populations.

What types of control procedures can be used to prevent aflatoxin formation? ›

Additional community- based methods to keep aflatoxin levels low in post-harvest settings include proper drying, storage in bags that allow for air circulation, and use of well-ventilated storage facilities that control for pests. Industrial sorting methods vary with the crop.

How to detox aflatoxins from the body? ›

Studies show that chlorophyllin and chlorophyll supplements help reduce the bioavailability of aflatoxin. Milk thistle, marshmallow root and dandelion root all help cleanse the liver and can lower digestive symptoms. Activated charcoal can help bind to aflatoxin mold and carry it out of the body more easily.

What temperature kills aflatoxins? ›

Similar degradation ratios were observed during dry heat treatment of wheat grains [40]. Roasting between 90 and 150 °C for 30 to 120 min reduced AF concentrations in peanuts and pistachio by 57–90 and 93%, respectively [42,43]. The cooking of maize can decrease AF content by 51 to 85% [44].

What are the chemical structures of aflatoxins? ›

Chemically, aflatoxins are difurocoumarolactones (difurocoumarin derivatives). Their structure consists of a bifuran ring fused to a coumarin nucleus with a pentenone ring (in B and M aflatoxins) or a six- membered lactone ring in G aflatoxins (Fig. 2).

How is aflatoxin removed? ›

Heat is relatively ineffective for destruction of aflatoxin although normal roasting, as of peanuts for the preparation of peanut butter, results in considerable reduction in aflatoxin content. Treatment withFlavobacterium aurantiacum removes aflatoxin and may be useful for beverages.

How do you control aflatoxin in cattle feed? ›

Cattle feed plant
  1. Maize should be pre-cleaned to remove all waste material and dust that may contain high levels of Aflatoxins.
  2. Mold inhibitors should be used in finished feed, especially during hot and humid conditions.
Jul 20, 2023

How do you degrade aflatoxin? ›

Microorganisms such as soil or water bacteria, fungi, and protozoa and specific enzymes isolated from microbial systems can degrade aflatoxin group members with varied efficiency to less- or nontoxic products.

What are the prevention and control of aflatoxins? ›

Drying is an effective method to inhibit aflatoxin production, while reduction of moisture level to 10% via quick and proper drying of post-harvested cereals and legumes can suppress A. flavus proliferation and aflatoxin production [16].

What are the natural inhibitors of aflatoxin? ›

Plant-based natural flavonoids were tested against Aspergillus flavus. Five natural flavonoids reduced the production of aflatoxin B1 by more than 85%. Inhibition of aflatoxin biosynthetic genes aflD, aflK, aflQ, and aflR was detected. Molecular structures closely associated with bioactivities were determined.

What are the aflatoxin management strategies? ›

Reduction and detoxification of aflatoxin is often achieved physically (sorting, physical segregation, flotation etc.), chemically (e.g. calcium hydroxide, ammonia) and microbiologically by incorporating pro-biotics or lactic acid bacteria into the diet.

Can aflatoxin be destroyed by cooking? ›

Cooking treatment could significantly reduce aflatoxins from rice before ingestion. Aflatoxins G were unstable at high temperature in presence of water. Cooking treatment was more effective to reduce aflatoxins from brown than white rice.

What destroys aflatoxins? ›

Oxidizing agents readily destroy aflatoxin, and treatment with hydrogen peroxide may be useful. Treatment of defatted oilseed meals with ammonia can reduce aflatoxin content to very low or undetectable levels with only moderate damage to protein quality.

How to remove aflatoxin from body naturally? ›

One of the most useful biological methods to reduce aflatoxins is the application of probiotic yeasts and bacteria in the diet. Although dairy diets may be associated with dangerous microorganisms,9 they are considered as the main source of several types of probiotics.

Which foods have the most aflatoxins? ›

The foods most susceptible to aflatoxins include peanuts, corn, tree nuts such as Brazil nuts and pistachios, and some small grains such as rice. Aflatoxin M1 is also found in milk of cows that eat aflatoxin B1 contaminated crops.

References

Top Articles
Latest Posts
Article information

Author: Tuan Roob DDS

Last Updated:

Views: 6353

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Tuan Roob DDS

Birthday: 1999-11-20

Address: Suite 592 642 Pfannerstill Island, South Keila, LA 74970-3076

Phone: +9617721773649

Job: Marketing Producer

Hobby: Skydiving, Flag Football, Knitting, Running, Lego building, Hunting, Juggling

Introduction: My name is Tuan Roob DDS, I am a friendly, good, energetic, faithful, fantastic, gentle, enchanting person who loves writing and wants to share my knowledge and understanding with you.